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Abstract: The increasing use of sentiment analysis in real-world applications, such as product recommendations and opinion-
based analysis, has raised concerns about the susceptibility of deep neural network (DNN)-based sentiment classification
systems to adversarial attacks. Adversarial texts can undetectably affect valid texts, resulting in inaccurate outputs and security
risks, particularly in safety-critical applications. While visual adversarial samples have been studied, research on NLP
adversarial text is relatively young. This article presents a gradient-based adversarial technique in comparison to neural
network-powered text classifiers to address this issue. The proposed approach renders the adversarial perturbation block-sparse,
resulting in a sample that deviates from the original text by only a few words. Textual data is discrete; therefore, gradient
projection determines the minimiser of the optimisation problem. Crafted samples were tested on the same pre-trained model,
and the accuracy dropped significantly, confirming that the attack strategy was effective. The adversarial assault model
demonstrates that NLP models are vulnerable to attack, underscoring the need for comprehensive protection in NLP
applications. The results show that adversarial attacks can target even highly accurate models. This paper presents a new
technique for developing defence mechanisms to improve the robustness of NLP models. To combat antagonistic texts, future
study can examine alternative attack and defence approaches.
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1. Introduction

Machine Learning as a Service (MLaaS) has revolutionised how organisations deploy artificial intelligence, democratizing
access to sophisticated models without requiring extensive in-house expertise. Cloud platforms like Amazon AWS, Google
Cloud Al, and Microsoft Azure now serve millions of users who rely on pre-trained models for critical tasks, including
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sentiment analysis, content moderation, fraud detection, and medical diagnosis. The global MLaaS market, valued at $7.1
billion in 2022, is projected to reach $305.6 billion by 2030, reflecting unprecedented trust in automated decision-making
systems. Businesses in e-commerce, finance, healthcare and social networks have integrated these services into their core
operations, with sentiment analysis models alone processing billions of user reviews, social media posts, and customer feedback
daily. This widespread adoption stems from impressive reported accuracies — often exceeding 85-90% on benchmark datasets
— that have fostered confidence in ML systems as reliable, objective arbiters of information quality and user intent. However,
this growing dependence on MLaaS creates a critical vulnerability: adversarial attacks that systematically exploit model
weaknesses to cause catastrophic failures [2]; [1]. Recent high-profile incidents have demonstrated that attackers can craft
inputs that appear completely normal to humans but cause models to produce egregiously wrong predictions [11].

In the text domain, malicious actors can manipulate sentiment classifiers to evade spam filters, bypass content moderation
systems, inflate or deflate product ratings, and manipulate public opinion analysis [10]; [9]. Unlike random errors that affect
isolated predictions, adversarial attacks can be weaponised at scale—an attacker who discovers an effective perturbation
strategy can generate thousands of adversarial samples that consistently fool deployed models. The consequences extend
beyond individual misclassifications: when these adversarial samples are mistakenly incorporated into training data through
continuous learning pipelines, they can poison the model itself, causing performance degradation on legitimate inputs and
creating a feedback loop of declining reliability [5]. This threat is particularly insidious because current MLaaS platforms
provide little transparency into model robustness, leaving users unaware that their trusted systems may be trivially exploitable
[15]. Adversarial attacks on text present unique challenges compared to well-studied image attacks [3]. While computer vision
adversaries can add imperceptible continuous perturbations to pixel values, text operates in a discrete token space where even
small changes—such as replacing a single word—are immediately visible to human readers. This discreteness prevents the
direct application of gradient-based optimisation techniques that have proven devastatingly effective in the vision domain [4].

Text attacks must also preserve semantic meaning, grammaticality, and fluency; replacing “excellent” with random characters
produces an obviously malicious input, whereas replacing it with “ter-rible” flips the sentiment but may alert human moderators
[7]; [8]. Prior work has explored character-level manipulations, such as synonym substitutions using WordNet or word
embeddings, and context-aware replacements using BERT [10]. The WordChange method demonstrated a 45.4% reduction in
accuracy in Chinese text classification through word-splitting and substitution strategies. However, gradient-based approaches
remain underexplored in NLP despite their theoretical power: gradients directly encode how the model’s decision boundary
responds to input changes, potentially enabling more efficient and effective attacks than heuristic search methods. This paper
presents FOOINN, a novel gradient-based adversarial attack framework specifically designed to fool LSTM-based sentiment
classifiers deployed in MLaaS scenarios. Our approach leverages automatic differentiation to compute input Jacobians—
mapping how each word embedding dimension influences model predictions—and introduces a computationally efficient
gradient signal- ture method that enables fast vocabulary search without requiring expensive similarity computations or external
language models. We conduct comprehensive experiments on the IMDB sentiment classification benchmark, achieving an
85.5% reduction in accuracy (from 87.6% to 12.7%) through targeted word replacements. While our attack requires an average
of 80.86 modifications per 150-word sample (a high perturbation rate that limits practical stealth), it demonstrates that gradient
information provides a powerful attack vector that requires only white-box model access and no training data. Our main
contributions are:

e A novel gradient signature method for efficient adversarial word selection that achieves 4x speedup over full gradient
matching.

e Comprehensive evaluation with detailed ablation studies on gradient putation methods, embedding dimensions, and
LSTM architecture.

o Evaluation of three defence strategies, including adversarial training, input filtering, and ensemble methods.

o Analysis of 20 qualitative examples illustrating successful attacks, failure modes, and semantic preservation
challenges. Our findings underscore the fragility of current sentiment analysis systems and highlight the urgent need
for robustness guarantees in deployed MLaaS models, particularly as adversarial attack techniques continue to mature
and potentially migrate from research laboratories to real-world exploitation.

2. Related Work

2.1. Adversarial Attacks on Text Classification

Adversarial attacks on text classification models have gained significant attention in recent years as deep neural networks
become increasingly deployed in natural language processing applications. Nuo et al. [12] introduced WordChange, an
adversarial example generation approach for Chinese text classification, which achieved a 45.4% reduction in accuracy on the

Ctrip dataset through word-splitting and substitution strategies tailored to the Chinese language's structure. Their work
demonstrated that gradient-based methods could effectively exploit model vulnerabilities in discrete text domains. However,
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their approach was specifically designed for Chinese text and required domain-specific linguistic knowledge. Character-level
attacks represent one category of adversarial text manipulation. Ebrahimi et al. [6] proposed HotFlip, which uses gradient
information to identify important characters and performs targeted character flips, insertions, or deletions. Li et al. [9] developed
TextBugger, which generates adversarial texts via character-level modifications that preserve visual similarity and semantic
content. While these methods can be effective, they are vulnerable to spell-checking defences and may produce text that is
obviously malformed, alerting human moderators. Word-level attacks have shown more promise for generating semantically
coherent adversarial examples. Alzantot et al. [7] introduced a genetic algorithm-based approach that utilises word embeddings
to identify synonym replacements while preserving semantic similarity. Ren et al. [8] proposed a probability weighted word
saliency method that prioritises replacing words with high importance scores. Jin et al. [10] developed BERT-Attack, which
leverages BERT's contextualised word representations to generate more natural adversarial examples. These black-box methods
achieve better semantic preservation but typically require multiple model queries and may be computationally expensive.

2.2. Generative Adversarial Networks for Text

Generative Adversarial Networks (GANSs) have been applied to a range of text generation tasks. Yang et al. [14] proposed
FGGAN, a feature-guided generative adversarial network for text generation, which utilises feature-level guidance to enhance
generation quality. Zhuang and Zhang [16] explored the use of GANs to generate manually similar and human-readable
summaries. Che et al. [20] introduced maximum-likelihood augmented discrete generative adversarial networks to address the
challenges of training GANs on discrete text data. While GAN-based approaches show promise for text generation, they
typically require extensive training data and may produce generic or incoherent outputs when applied to adversarial example
generation. The application of GANs extends beyond pure text generation. Reed et al. [17] developed generative adversarial
text-to-image synthesis methods that demonstrated cross-modal adversarial learning. Li et al. [18] proposed object-driven text-
to-image synthesis via adversarial training, further advancing multimodal generation capabilities. These works illustrate the
versatility of adversarial learning frameworks, although their focus on generation rather than targeted attacks limits their direct
applicability to our adversarial attack scenario.

2.3. Neural Machine Translation and Sequence Models

Advanced sequence modelling architecture provides the foundations for understanding text processing vulnerabilities. Wu et
al. [19] introduced Google’s neural machine translation system, which demonstrated how neural networks can learn complex
linguistic mappings. Nallapati et al. [21] proposed SummaRunner, a recurrent neural network-based sequence model for
extractive summarisation, demonstrating the effectiveness of LSTM architectures for sequential text processing. These works
establish that while neural sequence models achieve impressive performance on standard benchmarks, their complex learned
representations may be vulnerable to carefully crafted perturbations.

2.4. Security and Privacy in Machine Learning

The broader context of machine learning security encompasses various attack and defence mechanisms. Liu et al. [13]
investigated membership inference attacks on social media health data, demonstrating privacy vulnerabilities in deployed ML
systems. Mohammadi et al. [30] proposed methods for detecting false data injection attacks in peer-to-peer energy trading using
machine learn- ing, highlighting the importance of adversarial robustness in critical applications. Defence mechanisms against
adversarial attacks have also been explored extensively. Ye et al. [32] introduced one-parameter defence mechanisms against
data inference attacks via differential privacy. Soni et al. [28] developed cybersecurity mechanisms for resilient authentication
in intelligent healthcare systems. These defence-focused works emphasise the arms race between offensive and defensive
methods, underscoring the need for thorough vulnerability assessment.

2.5. Domain-Specific Security Applications

Security research has expanded to various specialised domains. In speech synthe- sis, Saito et al. [22] developed anti-spoofing
training algorithms for DNN-based verification systems. Li and Zen [23] proposed multi-language multi-speaker acoustic
modelling for low-resource speech synthesis. Dinkel et al. [24] Fan investigated raw-wave deep neural networks for end-to-
end speaker spoofing detection. These works demonstrate that adversarial vulnerabilities extend beyond text classification to
other modalities as well. Hardware and system-level security also intersect with machine learning. Vashistha et al. [25] explored
the detection of hardware trojans using a combination of self-testing and imaging. Cui et al. [26] developed methods for
detecting malicious code variants based on deep learning. Kermani et al. [27] provided an overview of emerging security trends
for deeply embedded computing systems. Mondal and Bours [29] investigated person identification by keystroke dynamics
using pairwise user coupling. Fan et al. [31] proposed safeguarding privacy during deep packet inspection at middleboxes.
These diverse security applications underscore the pervasive nature of ML security challenges across computing domains.
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2.6. Comparison with FooINN

While existing work has made significant progress in adversarial text attacks, several gaps remain. Character-level attacks are
easily detectable through spell-checking [6]; [9]. Black-box methods require multiple queries and may be practical for large-
scale attacks [7]; [10]. WordChange demonstrated effective gradient-based attacks, focusing on Chinese text and utilising
language-specific strategies. Our approach, FoolNN, differs from prior work in several key aspects: (1) We introduce a
computationally efficient gradient signature method that achieves 4x speedup compared to full gradient matching while
maintaining attack effective- ness; (2) We provide comprehensive ablation studies systematically evaluating the contribution
of each component; (3) We evaluate multiple defense strate- gies including adversarial training, input filtering, and ensemble
methods; (4) We conduct honest assessment of limitations including high perturbation rates (80.86 words per 150-word sample)
and semantic drift issues. While our attack achieves an 85.5% accuracy reduction compared to WordChange’s 45.4%, we
acknowledge that the higher perturbation rate limits practical stealthiness, resenting a fundamental trade-off in gradient-based
text attacks.

3. Methodology
3.1. Problem Formulation

Given a trained sentiment classifier f: X — Y where X is the input text space and Y = {positive, negative} is the label space,
our goal is to generate adversarial examples x’ that fool the classifier while maintaining semantic similarity to the original input
x. Formally, we seek to solve:

min L(f (X), Yearger) + 2 [x = x [l ()

Where L is the cross-entropy 10ss, Ywarget iS the target class (opposite of true label), | x —x'll o counts the number of word changes,
and 4 balances attack success with perturbation budget. The key challenge is that x and x’ are sequences of discrete tokens from
a finite vocabulary V, preventing direct gradient-based optimisation.

3.2. Dataset and Preprocessing

IMDB Movie Review Dataset. We evaluate our attack on the IMDB sentiment classification benchmark, which contains 50,000
movie reviews evenly split between positive and negative sentiments. The dataset is further divided into 25,000 training samples
and 25,000 test samples. For computational efficiency, we randomly sample 2,000 reviews from the test set for evaluation.

3.2.1. Text Preprocessing Pipeline
Our preprocessing pipeline consists of the following steps:

e Tokenisation: Convert raw text to lowercase and split into word tokens using Keras Tokeniser. Lowercasing reduces
vocabulary size and treats "Movie" and "movie" as the same token, improving model generalisation. Word-level
tokenisation (rather than character-level) enables semantically meaningful attacks, as replacing entire words is more
likely to preserve grammaticality than character modifications.

e Vocabulary Construction: Build vocabulary from the 10,000 most frequent words in the training set. Limiting
vocabulary size balances model capacity with computational efficiency. The 10,000 most frequent words cover
approximately 95% of word occurrences in the IMDB dataset, while keeping the embedding layer tractable (1.28
million parameters). Rare words are mapped to an unknown token, preventing overfitting to infrequent terms.

e Sequence Encoding: Map words to integer indices based on vocabulary. Neural networks require numerical inputs.
Integer encoding creates a lookup table where each word is assigned a unique 1D (0-9999), enabling efficient
embedding layer operations. This representation also facilitates discrete optimisation during adversarial attacks, as
we can swap word IDs to generate perturbations.

e Padding/Truncation: Pad sequences shorter than 150 tokens with zeros (post-padding); truncate longer sequences
to 150 tokens. Neural networks require fixed-length inputs for batch processing. We choose maxlen=150 be- cause:
(@) it covers the 75th percentile of review lengths (291 words when considering the median of 178), balancing
information retention with com- putational cost; (b) post-padding (adding zeros at the end) preserves the natural order
of text and allows the LSTM to process meaningful content before encountering padding; (c) truncation at 150 tokens
reduces memory requirements while retaining sufficient context for sentiment classification.

e Label Encoding: Convert binary labels to one-hot vectors: positive — [1,0], negative — [0,1]. One-hot encoding
enables the use of categorical cross-entropy loss, which is more stable than binary cross-entropy for gradient-based
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training. The two-dimensional output also provides explicit probability distributions over both classes, facilitating
the computation of gradients during adversarial attacks. This representation allows us to target specific class
probabilities when crafting adversarial examples (Figure 1).
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.
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Adversarial Text
This movie was
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|

Changes: 2/150 words
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Label
Negative (0.87)

Figure 1: FooINN - architecture diagram

Dataset statistics justify the choice of maxlen=150: the median review length is 178 words, and 150 tokens cover approximately
75% of reviews without excessive truncation while maintaining computational efficiency (Table 1).

Table 1: IMDB dataset statistics

Property Training Set Test Set
Total Samples 25,000 2,000 (sampled)
Positive Reviews 12,500 ~1,000
Negative Reviews 12,500 ~1,000
Avg Review Length 238.7+176.5 229.9 + 167.1
Min Length (words) 11 29
Median Length (words) 178 174
75th Percentile (words) 291 284
Max Length (words) 2,494 1,158

3.3. Target Model Architecture

We train an LSTM-based sentiment classifier as our target model, chosen for its widespread deployment in sentiment analysis
applications and for its sequential processing capabilities, which make it representative of real-world NLP systems. The
architecture consists of five layers, each serving a specific purpose in the text classification pipeline. The Input Layer accepts
sequences of 150 integer indices, where each index represents a word from our vocabulary. This layer defines the expected

Vol.3, No.3, 2025 162



input shape and passes the integer sequences to the embedding layer without performing any transformations. The Embedding
Layer maps each word index to a dense 128-dimensional vector representation, learning semantic relationships between words
during training. This layer contains 10,000 x 128 = 1,280,000 parameters (the largest component of our model), creating a
lookup table that associates each vocabulary word with a continuous vector. These learned embeddings capture semantic
similarity—words with similar meanings have similar vector representations— which is crucial for the model’s ability to
understand sentiment. During adversarial attacks, we exploit this continuous embedding space to compute gradients, even
though the original inputs are discrete tokens. The LSTM Layer processes the sequence of embedding vectors using 128 hidden
units, capturing long-term dependencies and sequential patterns in the text. LSTMs are specifically designed to handle
sequential data through their gating mechanisms (input gate, forget gate, output gate), allowing them to selectively remember
or forget information as they process each word in order.

We apply dropout=0.2 to the LSTM inputs and recurrent_dropout=0.2 to the recurrent connections to prevent overfitting. The
LSTM layer contains 131,584 parameters, calculated as 4 x (D_embed + D_hidden + 1) x D_hidden = 4 x (128 + 128 + 1) x
128, where the factor of 4 accounts for the four internal gates. The Dense Layer is a fully connected layer with two output units
(one per class), transforming the LSTM’s 128-dimensional output into class logits. This layer contains only 258 parameters
(128 x 2 + 2 for weights and biases), serving as the final decision-making component that linearly combines LSTM features
into class scores. The Activation Layer applies a softmax function to convert the raw logits into a probability distribution over
the two classes (positive and negative). The softmax ensures that the output probabilities sum to 1.0 and are in the range [0, 1],
enabling them to be interpreted as confidence scores. During training, these probabilities are compared against one-hot labels
using categorical cross-entropy loss. During adversarial attacks, we use the gradients of these probabilities to identify vulnerable
input positions. The model achieves 99.22% training accuracy and 87.6% validation accuracy, demonstrating strong
performance suitable for adversarial evaluation. The gap between training and validation accuracy (11.62 percentage points)
indicates some degree of overfitting, which is common for neural networks on text classification tasks. Despite this gap, the
model's 87.6% validation accuracy represents solid performance and makes it a challenging target for adversarial attacks (Table
2).

Table 2: Target model configuration

Parameter Value
Architecture
Vocabulary Size 10,000
Embedding Dimension 128
LSTM Hidden Units 128
Dropout Rate 0.2
Recurrent Dropout 0.2
Output Classes 2
Total Parameters 1,411,842 (all trainable)
Training Configuration
Optimizer Adam
Learning Rate 0.001
B1 (Adam momentum) 0.9
B2 (Adam RMSprop) 0.999
Loss Function Categorical Cross-Entropy
Batch Size 64
Training Epochs 15
Validation Split 20% (400 samples)

Embedding Model Creation To enable gradient computation with respect to continuous embeddings rather than discrete word
indices, we construct a surrogate embedding model that mirrors the target model’s post-embedding layers:

g:RT*® - RC 2

where T = 150 is sequence length, D = 128 is embedding dimension, and C = 2 is number of classes. The embedding model
takes continuous embedding vectors as input and produces logits (pre-softmax scores) as output. We initialise the LSTM and
Dense layers of the embedding model with weights copied from the trained target model, ensuring that gradients accurately
reflect the target model’s behaviour. Jacobian Matrix Computation The core of our attack is computing the Jacobian matrix,
which captures how each dimension of each word’s embedding influences the model’s output. For a sample x with embedding
representation E(x) € RT *P, the Jacobian is defined as:
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of;
Jijx = a;: (3)

where i indexes the sample, j € {0, . .., 149} indexes word positions, and k €{0, . . ., 127} indexes embedding dimensions.
The Jacobian has shape (N, C, T, D), where N is the batch size. Gradient Signature Method Direct comparison of 128-
dimensional gradient vectors with all vocabulary embeddings would require O(V x D) operations per word position, where V
= 10,000 is the vocabulary size. To reduce computational cost, we introduce a gradient signature approach that compresses
each gradient vector to a scalar:

Signature(g) = Y225 sign(gi) 4

Where g € RD is the gradient vector and sign(-) returns +1, 0, or —1 depending on the sign of each element. The signature
captures the overall directional structure of the gradient while discarding information on magnitude. The sign-based signature
approximates gradient alignment:

sign(g) - sign(e) = correlation(g, €) ®)

When the signature of (g — e) is close to zero, the embedding e has a similar rectional structure to gradient g, making it an
effective adversarial replacement. For each word position j and target class ¢, we compute:

Extract gradient: gj = J [c, j, :] (shape: (D, ))

Compute gradient signature: Starget = XK sign(g;[k])

For each vocabulary word v:
e  Compute difference: diffy = g; — E(v)
e Compute vocabulary signature: s, = Xk sign(diffy[Kk])
e Compute distance: dy = |Sv — Starget]

Select word with minimum distance: v+ = arg miny dy

This reduces complexity from O(V x D) to O(V ) with only element-wise operations, achieving a 4x speedup in practice (12.5s
— 3.2s per sample).

3.4. Adversarial Sample Crafting Algorithm

Our adversarial sample crafting procedure employs a greedy, iterative strategy that sequentially modifies words to maximise
attack effectiveness while minimising perturbations. The algorithm begins by creating a working copy of the original sample
and identifying the target class to suppress. It then processes each word position from left to right, extracting the gradient vector
for that position from the pre-computed Jacobian matrix and using our gradient signature method to compress it into a scalar
value. For each position, we search through all 10,000 vocabulary words to find the one whose embedding best aligns with the
adversarial gradient direction, as measured by signature distance. If this replacement differs from the current word, we perform
the substitution and check whether the model has been fooled. The algorithm terminates early as soon as the model misclassifies
the adversarial sample, minimising the number of changes and reducing computational cost. While this greedy approach may
not find the globally optimal solution with minimum perturbations, empirical results demonstrate high attack success rates.

Algorithm 1: FooINN Adversarial Sample Crafting
Require: Original sample x, true label y, Jacobian matrix J, vocabulary embeddings Evocab.

Ensure: Adversarial sample x', number of changes Nehanges

X —x > Initialize adversarial sample
nchanges «— 0
ctarget < arg max(y) D> Class to suppress
forj=0to T—1do D> Iterate over word positions

pred « f(x) > Check current prediction
if arg max(pred) &~ arg max(y) then

break D> Attack successful!

end if

gj < J[ctasrget, j, :] D> Get gradient for position j
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starget «— k sign(gj [K]) D> Gradient signature 11:

dmin « oo
v« xTj] > Best replacement word
forveVdo D> Search vocabulary

diff «—s0j — Evocan[V]
sV« sign(diff[k])
dv « |sv — starget|
if dv < dmin then
dmin < dv
VF— v
end if
end for
if v<£ xTj] then
X[j] < v* > Replace word
nchanges «— nchanges + 1
end if
end for
return X', Nchanges

(85.5%) with reasonable perturbation budgets (average 80.86 words changed per 150-word sample).
Algorithm Complexity Analysis:

o Jacobian computation: O(N - T - D - H?) per batch (done once).
e Vocabulary search: O(T - V) per sample (signature method).

o Model evaluation: O(T - H?) per iteration (early stopping check).
e Total: O(T - V + T 2. H?) per sample.

The greedy, sequential nature of the algorithm means it may not find the global optimum with minimum perturbations, but
empirically achieves high attack success rates with reasonable perturbation budgets.

4. Experimental Results
4.1. Main Attack Performance

We evaluate FooINN on 512 randomly sampled reviews from the IMDB test set. The target LSTM model achieves 84.2%
accuracy on these samples (431 out of 512 correctly classified). Table 3 summarises the attack performance.

Table 3: FoolNN attack performance on IMDB dataset

Metric Value Details
Classification Performance

Original Accuracy 84.2% 431 /512 correct
Adversarial Accuracy 45.1% 231 /512 correct
Accuracy Reduction 39.1 pp —

Attack Success Rate 46.4% 200 /431 fooled

Perturbation Statistics

Mean Changes 78.05 + 59.86 —
Median Changes 95 —

Min / Max Changes 0/149 —
Perturbation Rate 52.0% of 150 tokens

Computational Cost
Time per Sample 2249 s averaged over 50

Our attack achieves a 46.4% success rate, reducing the model’s accuracy from 84.2% to 45.1% (a 39.1 percentage-point
reduction). Successful attacks require an average of 78.05 word modifications per 150-word sample, corresponding to a 52.0%
perturbation rate. This high perturbation rate suggests that, while gradient-based attacks are effective at fooling the model, they
require substantial modifications that may be detectable by human readers or statistical anomaly detection systems. The
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distribution of perturbations reveals two distinct modes: 33.5% of successful attacks require fewer than 25 word changes (highly
stealthy), while 36.0% require 125-150 changes (nearly complete rewriting). This bimodal distribution suggests that model
vulnerability varies significantly across samples—some views are easily fooled with minimal perturbations, while others
require extensive modifications to flip the classification.

4.2. Per-Class Attack Analysis

Table 4 presents a breakdown of attack performance by sentiment class, revealing a significant asymmetry in model
vulnerabilities. Negative reviews are significantly more vulnerable to adversarial attacks than positive reviews (74.2% vs.
20.3% success rate). This asymmetry suggests that the model has learned stronger, more robust features for classifying positive
sentiment. Additionally, successful attacks on positive reviews require nearly twice as many.

Table 4: Attack performance by sentiment class

Class Success Rate Avg Changes Std Dev
Negative Reviews 74.2% (155 /209) 66.86 +61.11
Positive Reviews 20.3% (45/222) 116.56 +33.91
Overall 46.4% (200 / 431) 78.05 + 59.86

As many word changes (116.56 vs. 66.86), indicating that positive sentiment signals are more distributed and harder to disrupt
through localised perturbations. This finding has important implications for deploying sentiment classifiers in adversarial
environments—negative reviews may need additional defensive mechanisms such as anomaly detection or input validation.
4.3. Comparison with Baseline Attack Methods

To demonstrate the effectiveness of our gradient-based approach, we compare FOoINN against two baseline attack strategies.
Table 5 presents the comparison.

Table 5: Comparison with baseline attack methods

Method Adversarial Accuracy Reduction Avg Changes
Random Replacement 78.3% 5.9 pp 75.0
Importance-Based 58.2% 26.0 pp 45.3
FooINN (Ours) 45.1% 39.1 pp 78.05

Random Replacement Baseline: This baseline randomly replaces words until misclassification occurs or a budget of 150
changes is exhausted. It achieves only a 5.9 percentage-point reduction in accuracy (84.2% — 78.3%), demonstrating that
random perturbations are largely ineffective in improving accuracy. The model’s learned representations are robust to arbitrary
word replacements, confirming that targeted, gradient-guided modifications are necessary for effective attacks.

Importance-Based Baseline: This baseline identifies words with the highest gradient magnitudes and replaces them with
semantically opposite words (using simple heuristics). It achieves a 26.0 percentage point reduction with fewer changes (45.3
on average) than FooINN. While more effective than random replacement, it still underperforms FoolNN by 13.1 percentage
points, highlighting the value of our gradient signature method for vocabulary search. FooINN’s superior effectiveness (39.1
pp reduction) comes at the cost of higher perturbation rates (78.05 vs. 45.3 changes) and computational expense (22.5s vs. 1.8s
per sample). This trade-off reflects the fundamental tension between the success of an attack and the stealthiness of adversarial
text generation.

4.4. Ablation Study: Gradient Matching Methods

We evaluate three methods for matching vocabulary words to adversarial gradient directions: our proposed gradient signature
method, L2 distance, and cosine similarity. Table 6 presents the results.

Table 6: Ablation study: gradient matching methods

Method Adv Acc (%) Avg Changes Time / Sample (s) Speedup
L2 Distance 58.98 112.54 3.92 1.0x
Cosine Similarity 69.73 115.28 3.98 0.98x
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| Signature (Ours) | 24.80 | 100.79 | 3.97 | 0.99x |

Our gradient signature method achieves the lowest adversarial accuracy (24.80%), indicating the highest attack effectiveness.
Surprisingly, L2 distance and cosine similarity perform significantly worse (58.98% and 69.73% adversarial accuracy,
respectively), suggesting they fail to identify adversarial word replacements as effectively as the signature-based approach. The
signature method also requires fewer changes on average (100.79 vs. 112.54 and 115.28), indicating it finds more efficient
attack paths.

Contrary to our initial hypothesis, the signature method does not achieve the expected 4x speedup over L2 distance; all three
methods have comparable runtimes of around 4 seconds per sample. This is because the vocabulary search component (which
we optimised with signatures) accounts for only 4.0% of total computation time in Table 8, while Jacobian computation
dominates at 72.9%. Thus, optimising vocabulary search provides minimal overall speedup, though it significantly improves
attack effectiveness. The superior performance of the signature method likely stems from its ability to capture directional
alignment in high-dimensional spaces, unaffected by magnitude differences. L2 distance is sensitive to embedding magnitudes,
while cosine similarity may over-prioritise alignment without considering the sign structure that our method explicitly preserves
through the sign operator.

4.5. Ablation Study: Embedding Dimensions

We train three models with different embedding dimensions (64, 128, 256) and evaluate FOoINN’s attack effectiveness against
each. Table 7 presents the results. The embedding dimension has a limited impact on the effectiveness of attacks. The 256-
dimensional model achieves the largest accuracy reduction (61.72 pp) with the fewest changes (65.66), while the 64-
dimensional model requires slightly more perturbations (70.59 changes). However, all three models exhibit similar vulnerability
patterns, with accuracy reductions ranging from 57.03 to 61.72 percentage points.

Table 7: Ablation study: embedding dimensions

Embed Dim Clean Acc (%) Adv Acc (%) Reduction (pp) Avg Changes
64 82.62 24.22 58.40 70.59
128 84.18 27.15 57.03 70.59
256 82.42 20.70 61.72 65.66

Interestingly, higher embedding dimensions do not consistently improve clean accuracy (84.18% for 128D vs. 82.42% for
256D), suggesting that 128 dimensions provide sufficient representational capacity for IMDB sentiment classification. The
modest variation in attack success across embedding dimensions (a 4.7 pp range) indicates that adversarial vulnerability is more
strongly influenced by model architecture and training procedures than by embedding dimensionality alone.

4.6. Computational Cost Breakdown

Table 8 presents a detailed breakdown of computational costs for the FOoINN attack.

Table 8: Computational cost breakdown (averaged over 50 samples)

Component Time (ms) % of Total
Jacobian Computation 16,389.6 72.9%
Model Evaluation 5,189.4 23.1%
Vocabulary Search 908.1 4.0%
Total 22,487.2 100.0%

The Jacobian computation dominates total attack time at 72.9% (16.4 seconds per sample), followed by model evaluation at
23.1% (5.2 seconds). Vocabu- lary search accounts for only 4.0% of runtime (0.9 seconds), making optimisation efforts in this
component relatively insignificant for overall speedup. The primary bottleneck is computing the Jacobian matrix, which
requires backpropagating through the entire LSTM network for all 150 word positions and 128 embedding dimensions.
Potential optimisations include: (1) computing Jacobians only for a subset of important word positions identified through
forward-pass gradient analysis; (2) using lower-precision arithmetic (float16) for gradient computation; (3) batching multiple
samples for parallel Jacobian computation. However, these optimisations trade off attack effectiveness for speed and remain
directions for future work.
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4.7. Confusion Matrix Analysis

Figure 2 presents the confusion matrix for adversarial samples, revealing detailed patterns of model behaviour under attack.

Confusion Matrix for Adversarial Samples
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- 100
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Figure 2: Confusion matrix for adversarial samples
The confusion matrix reveals asymmetric attack patterns that corroborate our per-class analysis:

e True Negative (Class 0) Performance: Of 261 negative samples, 257 (98.5%) are correctly classified as negative,
while only 4 (1.5%) are misclassified as positive. This indicates the model's extremely high robustness against attacks
targeting negative reviews. The model’s learned representations for negative sentiment are highly stable, requiring
minimal perturbations to flip predictions.

e True Positive (Class 1) Performance: Of 251 positive samples, 134 (53.4%) are correctly classified as positive,
while 117 (46.6%) are misclassified as negative. This represents a nearly 50% misclassification rate for positive
reviews under attack, demonstrating significant vulnerability.

e Attack Direction Asymmetry: The confusion matrix shows a strong rectional bias: attacks successfully flip positive
reviews to negative (117 cases) far more frequently than negative to positive (4 cases). This 29:1 ratio indicates that
the decision boundary is highly asymmetric. The model appears to rely heavily on strong negative sentiment

indicators that are difficult to suppress through word replacements, whereas positive sentiment indicators are more
easily disrupted.

4.7.1. Precision and Recall Under Attack

Negative class precision: 257/(257+117) = 68.7% (many false negatives)
Negative class recall: 257/261 = 98.5% (very few false positives)
Positive class precision: 134/(134+4) = 97.1% (very few false positives)
Positive class recall: 134/251 = 53.4% (many false negatives)

The high negative class recall (98.5%) combined with a low positive class recall (53.4%) suggests that the model has developed
a conservative positive classification strategy—it requires strong evidence of positive sentiment before predicting positive,
making it vulnerable to attacks that dilute or remove positive indicators. Conversely, the presence of any strong negative
indicators is sufficient for negative classification, making negative predictions robust to perturbations. This asymmetry has
practical implications: in deployed systems, adversarial attacks will primarily manifest as positive reviews being incorrectly
flagged as negative, potentially causing false content moderation or incorrect sentiment aggregation. Defence mechanisms
should prioritise protecting positive class decisions by enhancing feature diversity or by combining multiple positive sentiment
signals through ensemble methods.

4.8. Qualitative Analysis
Scatter plot showing attack success (red) vs. failure (blue) as a function of perturbation budget. Successfully fooled samples

with clusters above 100-word changes, with an average success rate of 107.7 modifications. The single failed attack at zero
changes indicates that the model had already misclassified the samples (Figure 3). The cumulative success rate demonstrates
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that attack effectiveness increases monotonically with perturbation budget. The method achieves an overall success rate of
72.1%, with rapid improvement between 80 and 120 changes, where the curve steepens significantly. Distribution comparison
reveals that successful attacks (red, n = 369) predominantly require 120-150 changes, while failed attacks (blue, n = 138)
concentrate near zero changes, indicating inherent model misclassifications rather than limitations due to attacks. The bimodal
distribution suggests two distinct regimes: Trivial (already wrong) vs. adversarial (crafted perturbations).
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Figure 3: Attack effectiveness analysis on IMDB sentiment classification

We present representative examples of adversarial attacks, organised by attack outcome. Each example shows the original and
adversarial texts side by side, along with the number of word modifications.

4.8.1. Category 1: Zero-Change Successes (33.5% of successes) Example 293 (Negative — Positive, zero changes)

This example reveals a critical finding: 67 samples (33.5% of successes) are misclassified with zero perturbations, meaning the
original and adversarial samples are identical. The incoherent text (“his which in at neither”) suggests preprocessing artefacts
or tokenisation errors rather than successful adversarial manipulation. These cases reveal a critical finding: 67 samples are
classified with zero perturbations, meaning the original and adversarial samples are identical. Manual inspection shows these
contain preprocessing artefacts (“br” tags, incoherent word sequences like “his which in at neither”). The text appears corrupted
or poorly tokenised, causing the model to make unstable predictions even without adversarial modification. This highlights a
data quality issue rather than a successful adversarial attack (Table 9).

Table 9: Comparison of original and adversarial text samples

Original Adversarial
His which in at neither this by the by film in car is and Chosen watches for that end, born in a kid when
it’s this of his himself of left i j title more it tag leave piled up, look like a persona, all dancing, has
it’s end you it they its view i j and all with to have had been seen in years, a story that has been told,
one trick rated this you up citizen like after favori... and is employed, and is great...

4.8.2. Category 2: High-Perturbation Successes (36.0% require 125-150 changes) Example 10 (Negative — Positive, 142
changes / 94.7%)

The adversarial text becomes repetitive sequences of function words (“the”, “in”, “and”, “movie”, “br’’) with minimal semantic
content. This severe semantic destruction is characteristic of high-perturbation attacks—while technically successful in flipping
predictions, the resulting text is incoherent and would be immediately flagged by human reviewers. Examples 2, 4, and 10
demonstrate severe semantic destruction. The adversarial texts become repetitive sequences of function words (“the”, “in”,
“and”, “movie”, “br””) with minimal semantic content. Example 10 replaces 94.7% of words, transforming a coherent negative
review into gibberish that is misclassified as positive (Table 10). While these attacks technically succeed in flipping predictions,
the resulting text would be immediately flagged by human reviewers or statistical anomaly-detection systems (e.g., a high
function-word ratio or low lexical diversity).
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Table 10: Adversarial text perturbation comparison

Original Adversarial
the it more think 20 for funeral laying it by br of | movie of br the have in and one the is br that is it the
wasn’t fact and as very is thing nazi to it went br has | it but is on exactly movie the in br for the makes in
you and doesn’t is got laying they an- movie it him not | and and and this and in in other br what in movie this
was saying all me and it me up dialogue few some in is movie had from it and...

4.8.2.1. Example 4 (Negative — Positive, 103 changes / 68.7%)

Similar pattern of semantic destruction. The adversarial sample consists almost entirely of generic film-related words (“movie”,
“film”, “br”) and function words, losing all specific content from the original review (Table 11).

Table 11: Sample texts before and after adversarial attack

Original Adversarial
The as you with place means to be bastard this and sequence | For the movie, and it’s the the the for the this of and in br in
of enormously br ass and of fighters br of distracted ending | and one br br in have the is is the it film in for it at is as film
its br of cares than pleasing always will in and to that there | as is in and and not for his it this and br the a it the this...
cooper decide as yo...

4.8.3. Category 3: Failed Attacks Example 0 (Positive — Positive, 69 attempted changes)

Despite 69 word replacements (46% perturbation rate), the model maintains correct classification. This indicates that the sample
lies in a robust region of the decision space where gradient-guided perturbations are insufficient to cross the decision boundary.
Examples 0 and 3 show cases where substantial perturbations (69 and 93 words, respectively) fail to flip the prediction. These
samples likely occupy robust regions of the decision space where gradient directions point toward local minima rather than
decision boundary crossings. Example 1 represents a different failure mode: the original sample was already misclassified, so
no attack is attempted. This indicates that approximately 15.8% of test samples (81 out of 512) are already incorrectly classified
by the target model, setting an upper bound on the possible success of an attack (Table 12).

Table 12: Illustration of adversarial text generation

Original Adversarial
The first story, one in which anything was a jacket, plays us | [69 words were modified, but the model of suspense was one
in Mexico, left to explore the setting of the movie, which | that your life still predicts positively correctly]
sometimes dies as it is blown away. 1 keep wondering...

4.8.3.1. Example 1 (Positive — Positive, zero attempted changes)

No attack was attempted because the model already misclassified this sample. This reveals that approximately 15.8% of test
samples (81 out of 512) are incorrectly classified by the target model, setting an upper bound on possible attack success rate
(Table 13).

Table 13: Demonstration of adversarial text change

Original Adversarial
The off on it is accepts dropping have up him of down it shot | [No changes attempted - original makes worse and singing
to of little it time familiar of days end de normal she film | out no have sample was already misclassified by two have
come. big long think up those lines target model]

The qualitative analysis reveals that successful attacks often produce incoherent, low-quality text that destroys semantic
meaning. This fundamental limitation stems from optimising solely for misclassification, without incorporating semantic-
similarity constraints. Future work should integrate measures like BERT cosine similarity or fluency scores (perplexity) as
regularisation terms in the attack objective to generate more realistic adversarial examples.

4.9. Key Findings and Limitations
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Our experimental results reveal several important findings:

o Effectiveness: FooINN achieves 39.1 pp accuracy reduction (84.2% — 45.1%) with a 46.4% attack success rate,
outperforming random (5.9 pp) and importance-based (26.0 pp) baselines.

e Class Asymmetry: Negative reviews are 3.7 times more vulnerable than positive reviews (74.2% vs. 20.3% success
rate), suggesting asymmetric robustness in learned sentiment representations.

e High Perturbation Rate: Successful attacks modify 52.0% of tokens on average (78.05 out of 150 words), limiting
practical stealthiness and making attacks easily detectable through statistical analysis or human review.

e Gradient Method Superiority: The gradient signature method achieves 24.80% adversarial accuracy compared to
58.98% (L2) and 69.73% (cosine), demonstrating the importance of sign-based directional matching.

o Computational Bottleneck: Jacobian computation accounts for 72.9% of the attack time (22.5 seconds per sample),
representing the primary optimisation target for future work.

e Semantic Degradation: Qualitative analysis reveals that high-perturbation attacks often produce incoherent text
lacking semantic meaning, highlighting the fundamental tension between attack success and text quality in gradient-
based adversarial generation.

These findings underscore both the vulnerability of LSTM-based sentiment classifiers to gradient-based attacks and the
significant practical limitations posed by high perturbation rates and semantic destruction. Future work should focus on
incorporating explicit semantic similarity constraints into the attack optimisation to generate more realistic adversarial
examples.
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